777 research outputs found

    Orbital-Order Driven Ferroelectricity and Dipolar Relaxation Dynamics in Multiferroic GaMo4_4S8_8

    Get PDF
    We present the results of broadband dielectric spectroscopy of GaMo4_4S8_8, a lacunar spinel system that recently was shown to exhibit non-canonical, orbitally-driven ferroelectricity. Our study reveals complex relaxation dynamics of this multiferroic material, both above and below its Jahn-Teller transition at TJT=47_{\textrm{JT}}=47 K. Above TJT_{\textrm{JT}}, two types of coupled dipolar-orbital dynamics seem to compete: relaxations within cluster-like regions with short-range polar order like in relaxor ferroelectrics and critical fluctuations of only weakly interacting dipoles, the latter resembling the typical dynamics of order-disorder type ferroelectrics. Below the Jahn-Teller transition, the onset of orbital order drives the system into long-range ferroelectric order and dipolar dynamics within the ferroelectric domains is observed. The coupled dipolar and orbital relaxation behavior of GaMo4_4S8_8 above the Jahn-Teller transition markedly differs from that of the skyrmion host GaV4_4S8_8, which seems to be linked to differences in the structural distortions of the two systems on the unit-cell level.Comment: 6 pages, 3 figures + Supplemental Material (2 pages, 2 figures

    Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers

    Get PDF
    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths

    Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}

    Full text link
    A phase transition of a model compound of the long-range Ising spin glass (SG) Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}, where spins interact via the RKKY interaction, has been investigated. The static and the dynamic scaling analyses reveal that the SG phase transition in the model magnet belongs to the mean-field universality class. Moreover, the characteristic relaxation time in finite magnetic fields exhibits a critical divergent behavior as well as in zero field, indicating a stability of the SG phase in finite fields. The presence of the SG phase transition in field in the model magnet strongly syggests that the replica symmetry is broken in the long-range Ising SG.Comment: 4 pages, 4 figures, to be published in JPSJ (2010

    Mn-doping-induced itinerant-electron ferromagnetism in Cr[2]GeC

    Get PDF
    The magnetism of the M[n+1]AXn phase, Cr[2]GeC, and its Mn-doped system, (Cr[1−x]Mn[x])[2]GeC (x≤0.25), synthesized via a solid state reaction, was investigated systematically. Cr[2]GeC is in a spin-unpolarized state, but the ferromagnetic band polarization is induced immediately by the Mn doping. The Curie temperature, TC, and the spontaneous moment, ps, increase almost proportionally to the Mn concentration, strongly suggesting that Cr[2]GeC is located in the vicinity of a ferromagnetic quantum critical point. The strong concentration dependence of p[eff]/p[s], where p[eff] is the effective moment in the paramagnetic state, indicates that the ferromagnetism appearing in the Mn-doped Cr[2]GeC can be classified as a typical itinerant-electron ferromagnetism in a wide range of the degree of electron localization

    Anomalous phase of MnP at very low field

    Full text link
    Manganese phosphide MnP has been investigated for decades because of its rich magnetic phase diagram. It is well known that the MnP exhibits the ferromagnetic phase transition at \Tc=292 K and the helical magnetic phase below \TN=47 K at zero field. Recently, a novel magnetic phase transition was observed at T=282T^* = 282 K when the magnetic field is lower than 5 Oe. However, the nature of the new phase has not been illuminated yet. In order to reveal it, we performed the AC and the DC magnetization measurements for a single crystal MnP at very low field. A divergent behavior of the real and the imaginary part of the AC susceptibility and a sharp increase of the DC magnetization was observed at TT^*, indicating the magnetic phase transition at TT^*. Furthermore a peculiar temperature hysteresis was observed: namely, the magnetization depends on whether cooling sample to the temperature lower than \TN or not before the measurements. This hysteresis phenomenon suggests the complicated nature of the new phase and a strong relation between the magnetic state of the new phase and the helical structure.Comment: 4 pages, 2 figure

    Strong-field general relativity and quasi-periodic oscillations in x-ray binaries

    Get PDF
    Quasi-periodic oscillations (QPOs) at frequencies near 1000 Hz were recently discovered in several x-ray binaries containing neutron stars. Two sources show no correlation between QPO frequency and source count rate (Berger et al. 1996, Zhang et al. 1996). We suggest that the QPO frequency is determined by the Keplerian orbital frequency near the marginally stable orbit predicted by general relativity in strong gravitational fields (Muchotrzeb-Czerny 1986, Paczynski 1987, Kluzniak et al. 1990). The QPO frequencies observed from 4U 1636-536 imply that the mass of the neutron star is 2.02 +/- 0.12 solar masses. Interpretation of the 4.1 keV absorption line observed from 4U 1636-536 (Waki et al. 1984) as due to Fe XXV ions then implies a neutron star radius of 9.6 +/-0.6 km.Comment: 4 pages, uses aas2pp4.sty, submitted to ApJ

    Interplay between quantum criticality and geometrical frustration in Fe3Mo3N with stella quadrangula lattice

    Get PDF
    In the eta-carbide-type correlated-electron metal Fe3Mo3N, ferromagnetism is abruptly induced from a nonmagnetic non-Fermi-liquid ground state either when a magnetic field (~14 T) applied to it or when it is doped with a slight amount of impurity (~5% Co). We observed a peak in the paramagnetic neutron scattering intensity at finite wave vectors, revealing the presence of the antiferromagnetic (AF) correlation hidden in the magnetic measurements. It causes a new type of geometrical frustration in the stellla quadrangula lattice of the Fe sublattice. We propose that the frustrated AF correlation suppresses the F correlation to its marginal point and is therfore responsible for the origin of the ferromagnetic (F) quantum critical behavior in pure Fe3Mo3N

    1^1H-NMR Study of the Random Bond Effect in the Quantum Spin System (CH3_3)2_2CHNH3_3Cu(Clx_xBr1x_{1-x})3_3

    Full text link
    Spin-lattice relaxation rate T11T_1^{-1} of 1^1H-NMR has been measured in (CH3_3)2_2CHNH3_3Cu(Clx_xBr1x_{1-x})3_3 with x=0.88x=0.88, which has been reported to be gapped system with singlet ground state from the previous macroscopic magnetization and specific heat measurements, in order to investigate the bond randomness effect microscopically in the gapped composite Haldane system (CH3_3)2_2CHNH3_3CuCl3_3. It was found that the spin-lattice relaxation rate T11T_1^{-1} in the present system includes both fast and slow relaxation parts indicative of the gapless magnetic ground state and the gapped singlet ground state, respectively. We discuss the obtained results with the previous macroscopic magnetization and specific heat measurements together with the microscopic μ\muSR experiments.Comment: 4 pages, 2 figures, to be published in J. Phys. Soc. Jpn. vol.76 (2007) No.
    corecore